5,6,7,8-Tetrahydroquinolines. Part I. A Novel Synthesis of 7,8-Dihydro-quinolin-5(6H)-ones

By Adrian C. W. Curran, \dagger Institute of Medical Research, Wyeth Laboratories, Huntercombe Lane South, Maidenhead, Berkshire SL6 OPH

Abstract

The reaction of alkyl-substituted cyclohexane-1,3-diones with β-amino- $\alpha \beta$-unsaturated aldehydes or ketones ($\mathrm{R}^{1} \mathrm{CO}^{\cdot} \mathrm{CR}^{3} \cdot \mathrm{CR}^{2} \cdot \mathrm{NH}_{2}$) and, conversely, the reaction of alkyl-substituted 3 -aminocyclohex-2-enones with β -ethoxy- $\alpha \beta$-unsaturated aldehydes or ketones ($\mathrm{R}^{1} \mathrm{CO} \cdot \mathrm{CR}^{3}: \mathrm{CR}^{2} \cdot \mathrm{OEt}$) gives 2-, 3-, and 4-substituted 7.8-dihydro-quinolin- $5(6 H)$-ones which can be readily reduced to the corresponding 5,6,7,8-tetrahydroquinolines.

This paper describes the application of the Breitmaier reaction ${ }^{1}$ to the synthesis of the substituted 7,8 -dihydro-quinolin- $5(6 H$)-ones (1) and hence the $5,6,7,8$-tetrahydroquinolines (2), providing a more versatile route than previously available \ddagger for these compounds. ${ }^{1 a, b, 2}$ The 7,8 -dihydroquinolin- $5(6 H)$-ones (1) obtained by the reaction of cyclohexane-1,3-dione with 3 -aminoacrylaldehydes (3 ; $\mathrm{R}^{\mathbf{1}}=\mathrm{H}$) or 4 -aminobut-3-en-2-ones (3 ; $\mathrm{R}^{\mathbf{1}}=\mathrm{Me}$) can also be obtained by the reaction of $\mathbf{3}$ -aminocyclohex-2-enone with 3 -ethoxyacrylaldehydes (4; $\mathrm{R}^{\mathbf{1}}=\mathrm{H}$) or 4 -ethoxybut-3-en-2-ones ($4 ; \mathrm{R}^{1}=\mathrm{Me}$). A similar procedure for obtaining 7,8-dihydroquinolin$5(6 \mathrm{H})$-ones [e.g. (1c)] by the reaction of cyclohexane-1,3dione with protected 1,3 -dicarbonyl compounds (e.g. 1,1-dimethoxybutan-3-one) in the presence of ammonium acetate has appeared in the patent literature. ${ }^{4}$

The reaction of 3 -aminocyclohex-2-enone with 3 -ethoxy-2-methylacrylaldehyde (4a) in the absence of solvent (Method 1) gave the 7,8-dihydroquinolin-5(6H)one (1 la) in 50% yield. A similar yield was obtained when the reaction was carried out in toluene (Method 1A) or in acetic acid (Method 1B), but in the latter case a side reaction between the ethoxyacrylaldehyde (4a) and its ammonolysis product (3a) (from an exchange reaction

[^0]with 3 -aminocyclohex-2-enone) gave rise to a 15% yield of bis-(2 -methylacryloyl)amine. The same 7,8 -dihydro-quinolin-5(6H)-one (1a) was obtained when cyclohexane-1,3-dione reacted with 3 -amino-2-methylacrylaldehyde (3a) with triethylamine-piperidinium acetate as catalyst (Method 2). The various 7,8-dihydroquinolin-5(6H)ones (1) obtained by Methods 1 and 2 are summarised in the Experimental section; when the same product was obtained from both methods a comparison was made by g.l.c. and n.m.r. The 7,8 -dihydroquinolin- $5(6 \mathrm{H})$-one (la) was further identified by reduction to 3 -methyl- $5,6,7,8$ tetrahydroquinoline (2a) which was compared with authentic material obtained from cyclohexanone and 3 -amino-2-methylacrylaldehyde. ${ }^{1 a, b}$

In its reaction with 3-aminocyclohex-2-enone, β-ethoxycrotonaldehyde diethyl acetal behaves as the enol ether (4c), giving the anticipated 7,8 -dihydroquinolin- $5(6 \mathrm{H})$ one (1c), and similarly $1,1,3,3$-tetraethoxypropane with 3 -amino-5,5-dimethylcyclohex-2-enone behaves as the ethoxyacrylaldehyde (4d), giving the 7,8-dihydroquinolin$5(6 H)$-one (ld).

A possible mechanism is summarised in Scheme 1 [e.g. for the conversion (4c) \rightarrow (lc)]. Since the same products can be obtained from Methods 1 and 2 it is possible that the reactions follow a similar pathway. However an analogous reaction (in pyridine synthesis) between ethyl
${ }^{2}$ (a) F. Zymalkowski and M. Kother, Arch. Pharm., 1970, 303 (8), 667; (b) F. Zymalkowski and J. Rimek, ibid., 1961, 294, 759;
(c) F. Bohlmann and R. Mayer-Mader, Tetrahedron Letters, 1965,

171; (d) F. Zymalkowski and J. Rimek, Naturwiss., 1960, 4, 83.
${ }^{3}$ F. W. Vierhapper and E. L. Eliel, J. Org. Chem., 1975, 40, 2729.
${ }^{4}$ Ger. Offen. 2.001,572 (Chem. Abs., 1971, 755, 152,990j).
acetoacetate and 4 -aminobut-3-en-2-one (3c) has been reported ${ }^{5}$ to give 2,4-dimethylnicotinate via an intermediate bisenamine and, by a similar mechanism, 4 -aminopent-3-en-2-one has been reported ${ }^{6}$ to react with dimedone in the presence of benzaldehyde to give 3-acetyl-7,8-dihydro-2,7,7-trimethyl-4-phenylquinolin-5$(6 \mathrm{H})$-one. Such a mechanism would predict the formation of the 7,8 -dihydroquinolin- $5(6 \mathrm{H})$-ones (la and b)

from the reaction of the aminoacrylaldehyde (3b) with cyclohexane-1,3-dione and dimedone, respectively, by Method 2 but, since 4 -aminobut-3-en-2-one (3c) reacts

Scheme 1
with cyclohexane-1,3-dione to give the 7,8 -dihydro-2-methylquinolin- $5(6 \mathrm{H}$)-one (1c) rather than the 4-methyl isomer, the reaction must follow a different pathway.
To explain this inconsistency the mechanism in Scheme 2 is proposed, in which the enamine (3), under the con-

[^1]ditions of Method 2, is in equilibrium with the β-oxoaldehyde (5), which then reacts as in Scheme 1.

Scheme 2
Although most of this study has been directed at the more inaccessible 3 -substituted 7,8 -dihydroquinolin- 5 $(6 \mathrm{H})$-ones, the same approach can be applied to the synthesis of any alkyl- or aryl-substituted 7,8-dihydro-quinolin- $5(6 H)$-one, as shown by the reaction of the amino-ketone (3 e) with cyclohexane-1,3-dione to give 7,8-dihydro-2,4-dimethylquinolin-5(6 H)-one (le).

ExPERIMENTAL

M.p.s were determined with a Mettler FP1 instrument, microanalyses with a Perkin-Elmer 240 instrument, i.r. spectra with a Perkin-Elmer 521 instrument, and u.v. spectra with a Pye-Unicam SP 700C instrument; g.l.c. was performed with a Perkin-Elmer F11 instrument.
Preparation of 7,8 -Dihydroquinolin- $5(6 \mathrm{H}$)-ones (1).Method 1 (nosolvent.) A mixture of 3 -aminocyclohex-2-enone ($11.1 \mathrm{~g}, 0.1 \mathrm{~mol}$) and 3 -ethoxy-2-methylacrylaldehyde (11.4 g , 0.1 mol), in an apparatus equipped for downward distillation, was heated at $120^{\circ} \mathrm{C}$ for 16 h , during which time the theoretical volume of ethanol-water (6.5 ml) was collected. The residual oil was distilled to give 7,8-dihydro-3-methylquinolin$5(6 \mathrm{H})$-one as an oil ($7.8 \mathrm{~g}, 48 \%$), b.p. $78-80^{\circ}$ at 0.2 mmHg , m.p. 45-47 ${ }^{\circ}$ [needles from petroleum (b.p. $40-60^{\circ}$)] (Found: C, 74.8; H, 6.9; N, 8.9. $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}$ requires C , $74.5 ; \mathrm{H}, 6.9 ; \mathrm{N}, 8.7 \%$), $\lambda_{\text {max }} 234$ ($\varepsilon 8000$) and 291 nm (5000), $\nu_{\text {max }} 1685$ (C:O) and $900 \mathrm{~cm}^{-1}$ (aromatic). The oxime (needles from aqueous ethanol) had m.p. 180-181 ${ }^{\circ}$ (Found: C, 68.2; H, 6.9; N, 15.7. $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$ requires C , $68.2 ; \mathrm{H}, 6.9 ; \mathrm{N}, 15.9 \%$), $\nu_{\text {max. }} 2500-2900,1620$, and $980 \mathrm{~cm}^{-1}$.
Method 1A (in toluene). A solution of 3 -aminocyclohex-2enone ($11.1 \mathrm{~g}, 0.1 \mathrm{~mol}$) and 3-ethoxy-2-methylacrylaldehyde ($11.4 \mathrm{~g}, 0.1 \mathrm{~mol}$) in toluene (25 ml) was heated under reflux for 18 h and the cooled solution was washed with 2 N hydrochloric acid $(2 \times 20 \mathrm{ml})$. The combined washings were made alkaline with 4 N -sodium hydroxide and extracted $(3 \times 25 \mathrm{ml})$ with chloroform. The combined, dried $\left(\mathrm{MgSO}_{4}\right)$ extracts were distilled to give 7,8-dihydro-3-methylquinolin$5(6 H)$-one as an oil ($7.6 \mathrm{~g}, 48 \%$), b.p. $78-80^{\circ}$ at 0.2 mmHg , m.p. 43-45 .

Method 1B (in acetic acid). A solution of 3 -aminocyclo-hex-2-enone ($24.1 \mathrm{~g}, 0.22 \mathrm{~mol}$) and 3 -ethoxy-2-methylacrylaldehyde ($27.7 \mathrm{~g}, 0.24 \mathrm{~mol}$) in glacial acetic acid (55 ml) was heated under reflux for 24 h , cooled to $0^{\circ} \mathrm{C}$, and filtered giving bis-(2-methylacryloyl)amine ($5 \mathrm{~g}, 15 \%$), m.p. 252-
${ }^{6}$ E. Grinstein, E. Stankevics, and G. Duburs, Khim. geterotsikl. Soedinenii, 1967, 6, 1118 (Chem. Abs., 1968, 69, 77095).
253° (plates from ethanol) (Found: C, 62.5; $\mathrm{H}, 7.5$; N, 9.2. $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NO}_{2}$ requires $\mathrm{C}, 62.7 ; \mathrm{H}, 7.2 ; \mathrm{N}, 9.2 \%$), $\nu_{\text {max }}$ $3220(\mathrm{NH}), 2720$, and $1600-1650 \mathrm{~cm}^{-1}(\mathrm{C}: \mathrm{O})$. The acetic acid solution was evaporated in vacuo and the residual oil was dissolved in chloroform (100 ml) and washed with $2 \mathrm{~N}-$ hydrochloric acid ($2 \times 25 \mathrm{ml}$); the combined washings were made alkaline with 4 N -sodium hydroxide and extracted $(3 \times 50 \mathrm{ml})$ with chloroform. The combined, dried $\left(\mathrm{MgSO}_{4}\right)$ extracts were distilled to give 7,8-dihydro-3-methylquinolin-5(6H)-one as an oil (13.5 g, 40\%), b.p. $78-80^{\circ}$ at 0.2 mmHg, m.p. $43-45^{\circ}$.

Method 2. A mixture of cyclohexane-1,3-dione (22.4 g , 0.2 mol), 3-amino-2-methylacrylaldehyde ($17 \mathrm{~g}, 0.2 \mathrm{~mol}$), triethylamine (10 ml), and piperidinium acetate (0.25 g) was heated with stirring at $120^{\circ} \mathrm{C}$ for 24 h , cooled, and dissolved in 2 N -hydrochloric acid (50 ml); the solution was extracted ($3 \times 50 \mathrm{ml}$) with ethyl acetate and the extracts were discarded. The acidic solution was made alkaline with 4 N -sodium hydroxide and extracted ($3 \times 50 \mathrm{ml}$) with chloroform. The combined, dried $\left(\mathrm{MgSO}_{4}\right)$ extracts were distilled to give 7,8 -dihydro- 3 -methylquinolin- $5(6 \mathrm{H}$)-one ($17 \mathrm{~g}, 52 \%$) as an oil, b.p. 79° at $0.2 \mathrm{mmHg}, \mathrm{m} . \mathrm{p} .43-45^{\circ}$.

By the methods indicated the following 7,8 -dihydroquino-lin-5($6 H$)-ones were obtained: (i) 7,8-dihydro-3,7,7-trimethyl-quinolin-5(6H)-one, Method 1 from 3-amino-5,5-dimethyl-cyclohex-2-enone and 3-ethoxy-2-methylacrylaldehyde (53%) b.p. 80° at 0.2 mmHg ; hydrochloride m.p. $232-234^{\circ}$ (needles from propan-2-ol) (Found: C, 63.8; H, 7.1; N, 6.1. $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}, \mathrm{HCl}$ requires $\mathrm{C}, 63.8 ; \mathrm{H}, 7.1 ; \mathrm{N}, 6.2 \%$) ; Method 2 from 5,5-dimethylcyclohexane-1,3-dione and 3-amino-2methylacrylaldehyde (40%); (ii) 7,8-dihydro-2-methyl-quinolin- $5(6 \mathrm{H})$-one, Method 1 from 3 -aminocyclohex-2enone and 4 -ethoxybut-3-en-2-one (72\%) b.p. 64-66 ${ }^{\circ}$ at 0.05 mmHg (lit., ${ }^{4}$ b.p. $142-144^{\circ}$ at 14 mmHg); hydrochloride m.p. 223-225 ${ }^{\circ}$ (needles from propan-2-ol) (Found: C, $60.7 ; \mathrm{H}, 6.3 ; \mathrm{N}, 6.8$. $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}, \mathrm{HCl}$ requires $\mathrm{C}, 60.7 ; \mathrm{H}$,
6.1; N, 7.1\%); Method 1 from 3-aminocyclohex-2-enone and β-ethoxycrotonaldehyde (72%); Method 2 from cyclo-hexane-1,3-dione and 4 -aminobut-3-en-2-one (68%); (iii) 7,8-dihydro-7,7-dimethylquinolin-5(6H)-one, Method 1 from 3 -amino-5,5-dimethylcyclohex-2-enone and 1,1,3,3-tetraethoxypropane (36%), b.p. 61° at 0.2 mmHg ; hydrochloride m.p. 219° (needles from propan-2-ol) (lit., ${ }^{2 a}$ m.p. 213°) (Found: $\mathrm{C}, 62.6 ; \mathrm{H}, 6.8 ; \mathrm{N}, 6.5 . \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}, \mathrm{HCl}$ requires C, 62.4; H, 6.7; N, 6.6\%); (iv) 7,8-dihydro-2,4-dimethyl-quinolin- $5(6 \mathrm{H})$-one, Method 1 from cyclohexane-1,3-dione and 4 -aminopent-3-en-2-one (60%), m.p. 63-64 ${ }^{\circ}$ [needles from petroleum (b.p. $40-60^{\circ}$)] (Found: C, 75.5; H, 7.7; N, 8.1. $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}$ requires $\mathrm{C}, 75.4 ; \mathrm{H}, 7.5 ; \mathrm{N}, 8.1 \%$).

5,6,7,8-Tetrahydro-3-methylquinoline.-A mixture of 7,8-dihydro-3-methylquinolin-5(6 H)-one (20 g), hydrazine hydrate (14 ml), diethylene glycol (150 ml), and sodium hydroxide (14 g) was heated under reflux for 1 h . The condenser was replaced by a Dean-Stark water separator and the heating was continued for 3 h . The cooled mixture was diluted with water (200 ml) and extracted with ether ($3 \times 150 \mathrm{ml}$) and the combined, dried $\left(\mathrm{MgSO}_{4}\right)$ extracts were distilled to give 5,6,7,8-tetrahydro-3-methylquinoline ($17 \mathrm{~g}, 93 \%$) as an oil, b.p. 116° at 18 mmHg , g.l.c. (3% SE $30 ; 150^{\circ}$) $t_{\mathrm{R}} 3.5$ $\min ,\left(10 \% \mathrm{MS} 200 ; 150^{\circ} \mathrm{C}\right) t_{\mathrm{R}} 5.5 \mathrm{~min}, \nu_{\max }$ (film) 1600 , 1565,1245 , and $710 \mathrm{~cm}^{-1}$, identical with authentic material. ${ }^{1 a}$

5,6,7,8-Tetrahydro-3,7,7-trimethylquinoline.-7,8-Dihydro-3,7,7-trimethylquinolin-5 6 H$)$-one was reduced by the procedure used for the quinolone (la), giving 5,6,7,8-tetra-hydro-3,7,7-trimethylquinoline as an oil (98\%), b.p. 59° at 0.2 mmHg , g.l.c. $\left(2 \% \mathrm{OV17} ; 150^{\circ} \mathrm{C}\right) t_{\mathrm{R}} 6 \mathrm{~min}$. The picrate was isolated as the quarter hydrate as yellow needles (from ethanol), m.p. 173-174 ${ }^{\circ}$ (Found: C, 52.6; H, 4.9; N, 13.5 . $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{7}, 0.25 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 52.9 ; \mathrm{H}, 5.0 ; \mathrm{N}, 13.7 \%$), $\nu_{\max } 2040,1550$, and $1340 \mathrm{~cm}^{-1}$.
[5/2004 Received, 13th October, 1975]

[^0]: \dagger Present address: Reckitt and Colman Ltd., Pharmaceutical Division, Dansom Lane, Hull HU8 7DS.
 \ddagger Since this work was completed the selective hydrogenation of quinolines ${ }^{3}$ has provided an alternative route to the $5,6,7,8$ tetrahydroquinolines (2).
 ${ }_{1}$ E. Breitmaier and E. Bayer, (a) Tetrahedron Letters, 1970, 38, 3291 ; (b) Angew. Chem. Internat. Edn., 1969, 8, 765; (c) E. Breitmaier, S. Gassenmann, and E. Bayer, Tetrahedron, 1970, 26, 5907; (d) E. Breitmaier and S. Gassenmann. Chem. Ber., 1971, 104.665.

[^1]: ${ }^{5}$ N. K. Kochetkov, A. Gonsales, and A. N. Nesmeyanov, Doklady Akad. Nauk S.S.S.R., 1951, 79, 609 (Chem. Abs., 1955, 49, 15894).

